Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.
نویسندگان
چکیده
Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-resolution imaging methods, like stimulated emission depletion (STED) microscopy, have been predicted to fail in nanodiamonds. Here we show that, contrary to these predictions, STED can resolve single NV centers in 40-250 nm sized nanodiamonds with a resolution of ≈10 nm. Even multiple adjacent NVs located in single nanodiamonds can be imaged individually down to relative distances of ≈15 nm. Far-field optical super-resolution of NVs inside nanodiamonds is highly relevant for bioimaging applications of these fluorescent nanolabels. The targeted addressing and readout of individual NV(-) spins inside nanodiamonds by STED should also be of high significance for quantum sensing and information applications.
منابع مشابه
Three-dimensional stimulated emission depletion microscopy of nitrogen-vacancy centers in diamond using continuous-wave light.
Charged nitrogen-vacancy (NV) color centers in diamond are excellent luminescence sources for far-field fluorescence nanoscopy by stimulated emission depletion (STED). Here we show that these photostable color centers can be visualized by STED using simple continuous-wave or high repetition pulsed lasers (76 MHz) at wavelengths >700 nm for STED. Furthermore, we show that NV centers can be image...
متن کاملDiffraction unlimited all-optical recording of electron spin resonances.
We show stimulated emission depletion microscopy to break the diffraction limit in the all-far-field-optical detection of magnetic fields and resonances. Electron spin resonances from single nitrogen-vacancy centers in diamond located at subdiffraction proximities are fully discerned. Since diffraction is overcome by disallowing the signaling state through an optical transition such as stimulat...
متن کاملDiamond nanophotonics and applications in quantum science and technology
Diamond nanophotonics have evolved tremendously from the study of color centers in bulk single crystals and nanocrystals to their characterization in nanostructured environments. This development was facilitated by the ability to generate monolithic, sophisticated nanodevices in high quality single crystal diamond. Here, we present some recent contributions to the field of diamond nanophotonics...
متن کامل1 Single nitrogen vacancy centers in chemical vapor deposited diamond nanocrystals
Nanodiamond crystals containing single color centers have been grown by chemical vapor deposition (CVD). The fluorescence from individual crystallites was directly correlated with crystallite size using a combined atomic force and scanning confocal fluorescence microscope. Under the conditions employed, the optimal size for single optically active nitrogen-vacancy (NV) center incorporation was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 12 شماره
صفحات -
تاریخ انتشار 2013